集团主页
新闻动态
当前位置: 网站首页 >> 新闻动态 >> 正文
我院1篇论文被国际顶级期刊TPAMI录用
来源:bevictor伟德    发布时间:2023-11-30    【打印此页】

 


 近日,我院李亚男博士作为第一作者的最新研究成果“Multi-stage Asynchronous Federated Learning with Adaptive Differential Privacy”被人工智能领域顶级学术刊物IEEE Transactions on Pattern Analysis and Machine Intelligence(简称IEEE TPAMI)录用。

 IEEE TPAMI在中国计算机学会认定的人工智能领域四个A类期刊中排名第一,是计算机视觉及模式识别领域最顶尖的期刊,目前影响因子24.314。根据当前流行的Google Scholar Citation统计,IEEE TPAMI在所有计算机工程、电子工程及人工智能相关期刊榜单上以165分的h5-index排在第1位,主要收录人工智能、模式识别、计算机视觉及机器学习领域的原创性科研成果。TPAMI筛选极其严格,每年录用量仅200篇左右。

 联邦学习(FL)与差分隐私(DP)是两种主流的数据隐私保护技术,两者的结合能够增强多主体数据联合训练过程中的隐私安全。目前,FL与DP结合的主流做法是使用固定标准对梯度进行裁剪并添加噪声,但存在模型效用与隐私保护难以均衡这一根本问题。特别是在各参与方数据不能满足独立同分布这一经典假设时,需要牺牲更多的模型效用来保护数据隐私安全。为缓解模型效用与隐私保护矛盾这一根本问题,李亚男等提出了多阶段差分隐私保护的异步联邦学习架构MAPA,该架构能根据学习过程动态地调整梯度裁剪与噪声方差大小,以降低引入的噪声对模型效用的影响。进一步考虑中心服务器是否可信,提出了样本级隐私保护算法MAPA-S和用户级隐私保护算法MAPA-C。在大量标准联邦数据集上与6种先进的算法进行了比较,结果表明MAPA能够在不改变隐私保护程度前提下显著提升模型的效用,为异步联邦学习的行业应用提供了可行方法。

(通讯员 李亚男)

上一条:校评建办专家组莅临我院检查本科教学审核评估工作 下一条:关于开展消防宣传教育培训会

bevictor伟德
bevictor伟德官网 中国 河南焦作 高新区 世纪路2001号 [454000]
版权所有 © bevictor伟德(中国)官网-综合赛事平台|UEFA EURO 院办:0391-3986871